Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves
نویسندگان
چکیده
The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET.
منابع مشابه
ترابرد الکتریکی وابسته به اسپین در ساختارهای نامتجانس Fe-MgO-Fe
In this paper, spin-dependent electrical transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ) which consists of two ferromagnetic Fe electrodes separated by an MgO insulating barrier. These properties contain electric current, spin polarization and tunnel magnetoresistance (TMR). For this purpose, spin-dependent Hamiltonian is described for Δ1 and Δ5 bands in...
متن کاملBallistic spin injection and detection in FeÕsemiconductorÕFe junctions
We present ab initio calculations of the spin-dependent electronic transport in Fe/GaAs/Fe and Fe/ZnSe/Fe ~001! junctions simulating the situation of a spin-injection experiment. We follow a ballistic Landauer-Büttiker approach for the calculation of the spin-dependent dc conductance in the linear-response regime, in the limit of zero temperature. We show that the bulk band structure of the lea...
متن کاملReversal of spin polarization in Fe/GaAs (001) driven by resonant surface states: first-principles calculations.
A minority-spin resonant state at the Fe/GaAs(001) interface is predicted to reverse the spin polarization with the voltage bias of electrons transmitted across this interface. Using a Green's function approach within the local spin-density approximation, we calculate the spin-dependent current in a Fe/GaAs/Cu tunnel junction as a function of the applied bias voltage. We find a change in sign o...
متن کاملخواص مغناطیسی نانولوله گالیوم آرسناید زیگزاگ (0,9) آلایشیافته با عناصر واسطه
of 3d transition metals (Sc, Ti, Cr, Mn , Fe, Co, Ni) in both far and close situations were studied based on spin polarised density functional theory using the generalized gradient approximation (LDA) with SIESTA code. The electronic structures show that zigzag (0,9) GaAs nanotubes are non-magnetic semiconductors with direct band gap. It was revealed that doping of 11.11 % Fe and Mn concentrati...
متن کامل"Spin Injection and Scattering in Semiconductor Heterostructures"*
Efforts to implement semiconductor-based spintronic devices have been crippled by the lack of an efficient and practical means to electrically inject spin-polarized carriers into a semiconductor heterostructure. Spin injection from semimagnetic semiconductor contacts (ZnMnSe/AlGaAs/GaAs) has produced electron spin polarizations of ~ 85% in the GaAs QW [1]. Several factors potentially limit spin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016